NASA GRC

High Altitude Balloons at NASA GRC

For Ohio Space Grant Consortium 25 July 2003

David Snyder
Solar Cell Measurements & Calibration
Space Power Division
NASA GRC

Why High Altitude Balloons?

Weather Service

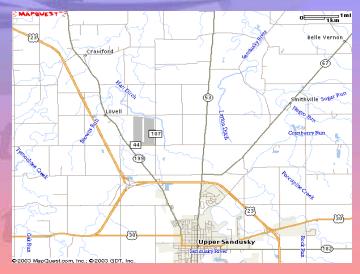
- Launches from over 80 sites twice a day
- Launches under most weather conditions
- \$200 payload
- Atmosphere profiles up to 33 km (102 kft)
- Data:
 - Pressure
 - Temperature
 - Dew point
 - Direction
 - Speed

Why High Altitude Balloons?

Relatively low cost access to near space conditions.
"Poor man's space program"

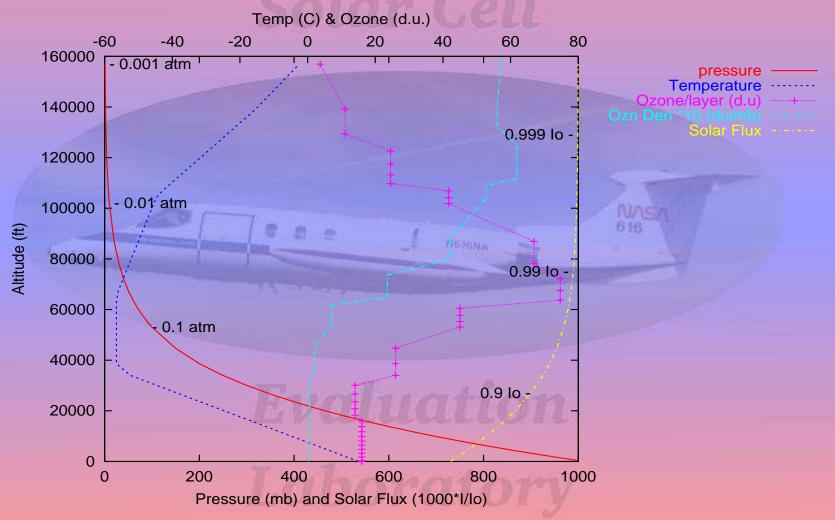
HAM radio equipment

Payload development Can be simple Parts + labor


Launch costs ransportation

Tracking/recovery
Ham Radio equipment
Transportation Reach 30 to 35 km

10 to 5 mbar (above 99% atm)


Why Ohio?

- Suntracker Launches from Western Ohio/Eastern Indiana
- Flat
- Rural (low population density)
- **Good Access**
 - grid of roads
 - Nearly every mile
 - Still close to cities.

Atmosphere

NASA Solar Cell Calibration

GOAL: Determine Solar Cell Performance in space.

- JPL Balloon Program
 - 120kft, above most of the Ozone (Air mass 0.004)
 - 2 to 4 flights/year in Summer
 - \$5000/cell
- GRC high altitude aircraft
 - Lear 25, Data from 35 to 50 kft (Air mass 0.18, below Ozone layer)
 - 35-40 flights in late Fall through Winter
 - \$15000/flight with up to 6 solar cells

Potential Balloon Program

- Proposed by Jim Woodyard, Wayne State University, Detroit
- Use weather balloon technology
- 100kft, (air mass 0.02) top of ozone layer.
- Could fly most of the year.
- \$3000/flight for several cells, could be operated by solar array manufacturers

Suntracker Demonstration

- 5 lb. Package
- 90kft
- Launch, GPS assisted tracking and retrieval
- Sun Tracking
- 8-bit A/D demonstrates feasibility of SC calibration (really need 12 or 16 bit)
- 2m packet radio data transmission (1200 Baud), and 70cm video

Suntracker Systems

Like satellites, balloon payloads have weight and power limits.

- Unmanned free balloons are covered under section 101 of the Federal Aviation Regulations.
 http://www.eoss.org/pubs/far_annotated.htm
 - Under 4-6 lbs need only notify FAA of plans, and file a verbal NOTAM, so pilots are warned of the flight. Learn procedures from other balloon groups.
- Limited weight implies limited power.
 Usually Lithium D cells

Payload (5 lb)

- Suntracker (2m system)
 - GPS
 - Motor drivers, Zero-backlash gears
 - Electronics (MIM (inc Packet radio telemetry), Basic Stamp 2p, PIC 16F84)
 - Battery Pack
 - Voltage regulators
 - 2 meter radio (300 mW)
- Video system (70 cm system)
 - Color camera
 - 1 watt UHF TV transmitter
 - Video overlay circuit board
 - GPS
 - Battery Pack (4 lithium cells)
 - Voltage Regulators
- Antennas
- Package urethane foam (10 in dia x 10 in)

References & possible Projects

Balloon Web sites

- <http://www.amsat.org/amsat/balloons/balloon.htm>
- <http://www.eoss.org>

Suntracker Papers

http://www.ewh.ieee.org/reg/4/Mirza.pdf

Projects?

- Atmosphere Profiles
 - Pressure vs Altitude
 - Residual Gas Analyzer
 - Solar spectral absorption
 - Geomagnetic field
- Particle capture
 - Dust (terrestrial, extraterrestrial, biological)
- Astronomy
 - UV, IR, cosmic ray
- Remote Sensing
 - Ground imaging
 - Land use
 - Pollution

The Sky is not the limit